Reclamation Review of Stochastic Streamflow Simulation at Interannual and Interdecadal Time Scales and Implications to Water Resources Management

Cameron Bracken^{1,2}, Balaji Rajagopalan¹, Edith Zagona²

March 21, 2011

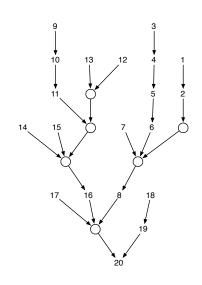
¹University of Colorado at Boulder

²Center for Advanced Decision Support for Water and Environmental Systems

OUTLINE

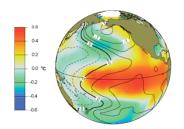
- ► Seasonal Forecasts
- ► Hidden Markov Models
 - ► Simulations
 - Two Year Forecasts

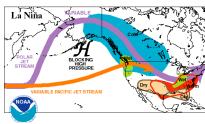
STUDY AREA



LARGE-SCALE CLIMATE INFLUENCE ON BASIN-SCALE HYDROLOGY

How can skillful predictions be made in the earlier in the winter/spring season when snowpack data is unavailable or incomplete? Large-scale climate variables can be used as predictors of peak season streamflow [Grantz et. al. 2005] [Regonda et. al. 2006].

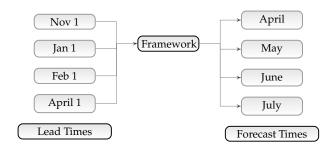




ORIGINAL STUDY

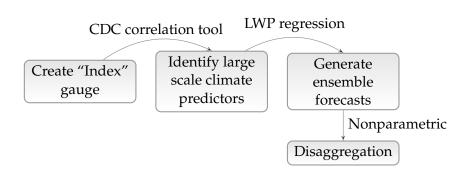
Introduction and Background

Bracken et al. 2010 demonstrated the feasibility of simultaneously forecast many spatial locations while preserving spatial dependencies.



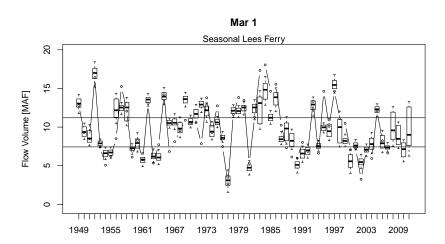
▶ Predictors are: PDSI, SST, Zonal/Meridional Winds, Geopotential Height, SWE

FRAMEWORK



Introduction and Background

SEASONAL FORECAST RESULTS: DROP ONE **CROSS-VALIDATION**



Time

Introduction and Background

SEASONAL FORECAST RESULTS: DROP ONE **CROSS-VALIDATION**

Validation mode	apr1	mar1	feb1	jan1	nov1
Leave-one	1.00	1.00	0.91	0.66	0.30
Retroactive	0.85	0.42	0.58	0.46	0.66

Table: Lees Ferry total flow forecast skills

DISAGGREGATION

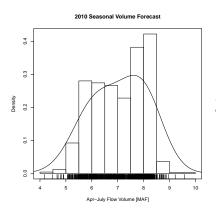
Introduction and Background

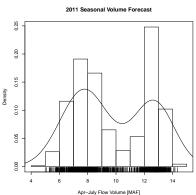
Skills generally translate after disaggregation.

Table: Jan 1 RPSS after disaggregation drop-one

	April	May	June	July
Colorado River At Glenwood Springs, CO	-0.01	0.17	0.44	0.32
Colorado River Near Ĉameo, CO	-0.04	0.15	0.51	0.48
Taylor River Below Taylor Park Reservoir, CO	0.04	0.10	0.27	0.41
Gunnision River Above Blue Mesa Reservoir, CO	0.07	0.34	0.49	0.47
Gunnison River At Crystal Reservoir, CO	0.13	0.26	0.38	0.08
Gunnison River Near Grand Junction, CO	0.06	0.35	0.48	0.38
Dolores River Near Cisco, UT	0.20	0.26	0.34	0.41
Colorado River Near Cisco, UT	0.08	0.17	0.09	0.11
Green R Bel Fontenelle Res, WY	0.23	0.22	0.14	-0.07
Green R. Nr Green River, WY	0.04	0.12	0.09	0.17
Green River Near Greendale, UT	0.17	0.33	0.25	0.17
Yampa River Near Maybell, CO	0.02	0.32	0.40	0.36
Little Snake River Near Lily, CO	-0.03	0.33	0.31	0.24
Duchesne River Near Randlett, UT	0.23	0.34	0.24	0.32
White River Near Watson, UT	0.13	0.22	0.37	0.46
Green River At Green River, UT	0.05	0.22	0.17	0.25
San Rafael River Near Green River, UT	0.13	0.33	0.42	0.12
San Juan River Near Archuleta, NM	-0.02	0.26	0.16	0.31
San Juan River Near Bluff, UT	0.09	0.31	0.28	0.16
Colorado R At Lees Ferry, AZ	0.17	0.24	0.17	0.35

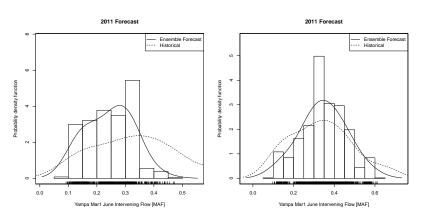
2011 FORECASTS





Issued March 1

2011 FORECASTS



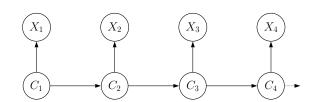
Issued March 1

TWO YEAR FORECASTS

- 1. In the second year, climate/snowpack information is not available/poor
- 2. A logical step is to use time series methods, ARMA, KNN, MC, Time Domain Methods
 - 2.1 These methods provide little or no predictability over climatology
- 3. Snow, Climate predictors and seasonal flow timeseries have very low autocorrelation (LF, 0.26)
- 4. Goal to make predictions from Apr 1 of the following year seasonal flow.

$$\Pr(C_t|\mathbf{C}^{(t-1)}) = \Pr(C_t|C_{t-1}), t = 2,3,...$$

 $\Pr(X_t|\mathbf{X}^{(t-1)},\mathbf{C}^{(t)}) = \Pr(X_t|C_t), t \in \mathbb{N}$



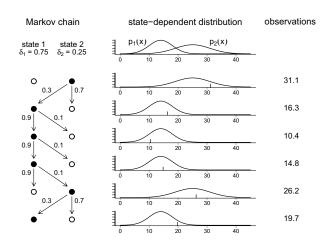
- 1. General time series model
- 2. Markov process determines 'hidden' state, state dictates component distribution
- 3. A model that includes discrete states makes intuitive sense given the concept of climate regimes (such as El Nino)

Two Year Forecasts

00000

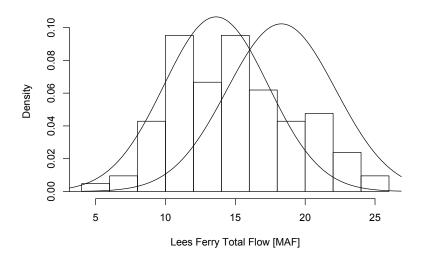
HIDDEN MARKOV MODELS

Introduction and Background

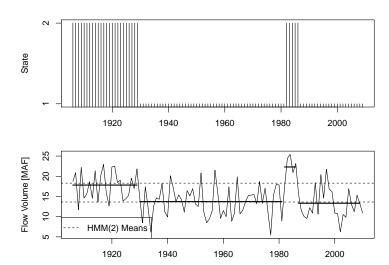


Flexibility over explicit MC states.

LEES FERRY HMM



GLOBAL DECODING

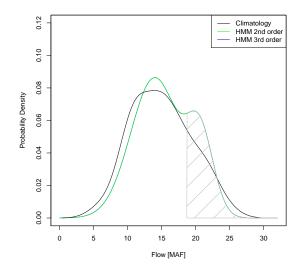


Conclusion

HMM RESULTS (1984)

Introduction and Background

Climatology, 10%; HMM(2), 14%

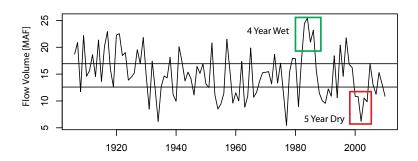


HIDDEN MARKOV MODELS FOR SIMULATION

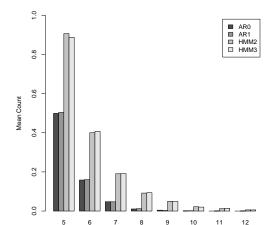
- ► HMMs are also useful for simulation (used in risk analysis).
- ► Alternative to AR simulations or

Introduction and Background

Can we capture longer period variability?



Introduction and Background



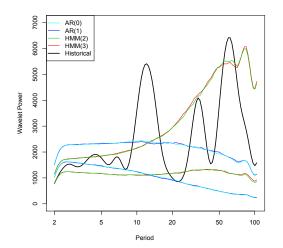
8 9 10 11

Run Lenath

HMMs can capture longer spells than AR models.

5 6

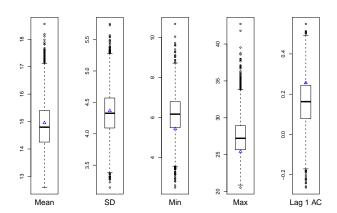
WAVELET SPECTRUM



Ability to capture longer period variability

SIMULATION STATISTICS

Introduction and Background



Also capture observed statistics.

CONCLUSIONS

- ► Skillful single year seasonal forecasts at all natural flow nodes starting on Nov1
- ► Second year forecasts (via HMMs) can be made starting on Apr 1 with overall positive skill.
- ► HMMs are also useful for simulation.